ImageJ User & Developer Conference 2008

bUnwarpJ: Consistent and Elastic Registration in ImageJ.

Ignacio Arganda-Carreras^{1,2}

¹Biocomputing Unit, National Centre for Biotechnology (CSIC). Madrid, Spain ²Escuela Politécnica Superior. Universidad Autónoma de Madrid. Madrid, Spain

Outline

User or developer? What can this plugin offer me? As user: Main features. Parameters. Results. As developer: Flow chart. Optimizer. Future work? Extensions?

bUnwarpJ for users

(if you dare...)

Consistent and elastic registration

The plugin: main features

Image and deformation representation: cubic B-splines

- Multi-resolution approach
- Spline deformation
- Spline interpolation
- Vectorial splines

So, what is the deformation precision?

Multi-resolution: from "Very coarse" to "Super Fine".
 Meaning: from 2^o x 2^o = 1x1 intervals of B-spline coefficients to 2⁴ x 2⁴ = 16x16 intervals.

Basically, more B-spline coefficients, more details.

- Image similarity: MSE Mean Square Error (grayscale pixel value)
- Landmarks: geometric error between landmark points.
- Regularization: divergence and curl of the deformations.
- Consistency: geometric distances between the pixel coordinates after applying both transformations (direct and inverse).

Weights: similarity and landmarks

Similarity:

difference between pixel values. Weight: 1.0 usually enough.

 Landmarks: distance between manual landmark points. Weight: 1.0 (if any).

Weights: regularization

- The regularization weights penalize the divergence and curl of the vector field.
- Meaning: we penalize vector fields with many points like this:

Result: we force the deformation to be smooth.
Weights: 0.1 and 0.1 when there's no prior knowledge about the deformation shape.

Weights: consistency

- How invertible are the deformations?
- Weights: 10-30 are usually stable values.
- Advice: play around!

Similarity-Consistency

The toolbar

Results information (1)

Basic

"Verbose" option checked

Results information (2)

- If the "Verbose" option is checked, then every step of the optimization process is displayed.
- The "Stop Threshold" is the difference between these steps that forces the program to end.
- The optimal error values are displayed at the end of the process.

🍝 Result	is 🕘	
File Ed	dit Font	
Consis	tency Error (t–s): 5.6788949347	29587
f(35)=35	2.5629573468675 lambda=10(00.0
Accepte	d	
Image	error (s-t): 187.82036833	612278
Image	error (t–s): 153.71636048	888152
Consis	tency Error (s-t): 5.4239806040)519785
Consis	tency Error (t-s): 5.6728416480	041162
f(36)=35	2.6335510770974 lambda=100	0.0
Image	error (s-t): 187.69395849	6934
Image	error (t-s): 153.75317165	893526
Consis	tency Error (s-t): 5.4287950537	83524
Consis	tency Error (t-s): 5.6772708972	246117
f(37)=35	2.55319610689884 lambda=10	000.0
Optimal	direct similarity error = 187.693	3958496934
Optimal	inverse similarity error = 153.75	5317165893526
Optimal	direct consistency error = 0.542	8795053783524
Optimal	inverse consistency error = 0.56	\$77270897246117
2		

Other relevant features for users

Since version 2.0 (August 29th, 2008), bUnwarpJ is fully compatible with ImageJ macro language. Example:

consistency_weight=10 stop_threshold=0.01 verbose save_transformations");

- bUnwarpJ can be called from command line (no GUI).
- Color images are processed in grayscale and the resulting deformations are applied to the RGB channels.
- No, there is no such a thing as bUnwarpJ 3D (yet).

bUnwarpJ for developers

(if you dare...)

Flow chart

The initial deformations are the affine transformations between landmarks if they exist or the Identity if they don't.

Optimization

Optimizer steps

- It starts at the lowest resolution of both pyramids.
- It increases first the deformation detail.
- When the level optimum is found, it moves up in the other pyramid.

Results Only Elastic

Direct

Inverse

Consistent

Source

Results (2)

- Especially useful for serial images of broken, torn or folded tissue.
- Example: TEM sections of Lamina tissue from Drosophila Melanogaster.

Images by courtesy of Marta Rivera-Alba

SIFT and MOPS plugins support

 Automatic landmarks introduced thanks to Stephan Saalfeld's plugin.

 Don't miss next talk ;-)

Future work (any volunteer?)

Extension to 3D images:

- Complexity.
- Visualization?
- Open source alternatives: Elastix, ITK?
- Change similarity metric, mutual information?Detailed manual.

